

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Summary (1024-character limit)

Pre-clinical radiotracer biomedical research involves the use of compounds labeled with radioisotopes, including radio-ligand bio-distribution studies, cell binding studies, immune cell labeling techniques, and \mathbb{Z} -based therapies. Before this Micro-Dose Calibrator, measurement of pre-clinical level dosage for small animal studies was inaccurate and unreliable. This dose calibrator is a prototype ready for customer testing and scale-up. It is designed to accurately measure radioactive doses in the range of 50 nCi (1.8 kBq) to $100 \,\mu\text{Ci}$ (3.7 MBq) with 99% precision. The NCI seeks co-development or licensing to commercialize it. Alternative uses will be considered.

NIH Reference Number

E-241-2016

Product Type

Devices

Keywords

• Medical Radioisotope, Imaging Agent, Dose Calibrator, Adler

Collaboration Opportunity

This invention is available for licensing and co-development.

Contact

Michael Salgaller, Ph.D.
NCI - National Cancer Institute

240-276-5476

michael.salgaller@nih.gov (link sends e-mail)

Description of Technology

Molecular imaging is a disease-specific targeting modality that promises much more accurate diagnoses of serious diseases such as cancer and infections. Agents are being continually developed with a view to clinical translation, with several such therapies requiring measurement of very small doses. Currently, there is no way of accurately measuring small amounts of radioactivity used in many pre-clinical tracer studies, as on-the-market commercial dose calibrators measure at too high a dose range, typically at $10\text{-}1000\,\mu\text{Ci}$ and higher. Using such commercial calibrators to estimate micro-doses ($0.01\text{-}10\,\mu\text{Ci}$) results in unavoidable and up to \pm 20% measurement errors. Alternatively, well-counters that can measure small doses are not suited for measurements of doses greater than $1\,\mu\text{Ci}$, resulting in a coverage gap ($1\text{-}10\,\mu\text{Ci}$),

a critical range for bio-distribution studies, cell binding studies, immune cell labeling techniques, and ②-based therapies.

To solve the problem of measuring a wider range of radioactivity doses, and without the need of a volumetric correction, the NCI Molecular Imaging Program invented a device (see images below) that can accurately measure radioactivity doses between 0.1-100 μ Ci, with 1% error. The device is a working prototype and requires collaboration to manufacture it. NCI seeks parties to commercialize this technology through collaborative co-development or licensing.

Video abstract: New and improved micro dose-calibrator designed to accurately measure radioactive doses in the range of 50 nCi to $100 \,\mu\text{Ci}$ with 99% precision, useful in radio-ligand bio-distribution studies, cell binding studies, immune cell labeling techniques, and 2-based therapies.

Potential Commercial Applications

Bio-distribution pre-clinical studies Immune cell cancer therapy

Competitive Advantages

- Measure small doses between 50 nCi (1.8 kBq) and 100 µCi (3.7 MBq) with 1% accuracy
- Measure volumes of activity up to 20cc without volumetric correction to 1% accuracy

Inventor(s)

Stephen S. Adler (FNLCR)

Development Stage

• Prototype

Patent Status

• U.S. Patent Filed: U.S. Patent Application Number 62/554,980, Filed 06 Sep 2017

Therapeutic Area

- Cancer/Neoplasm
- Infectious Diseases
- Immune System and Inflammation